Respuesta :
Option B: [tex]\frac{1}{(m-4)(m-3)}[/tex] is the correct answer.
Explanation:
The given expression is [tex]\frac{(\frac{m+3}{m^2-16}) }{(\frac{m^2-9}{m+4} )}[/tex]
Simplifying the expression, we have,
[tex]\frac{m+3}{m^{2}-16}\times\frac{m+4}{m^2-9}[/tex]
Factor the equations, [tex]m^{2}-16\right[/tex] and [tex]m^{2}-9[/tex],we get,
[tex]m^{2}-16\right=m^{2}-4^{2}=(m+4)(m-4)[/tex]
[tex]m^{2}-9=m^{2}-3^2=(m+3)(m-3)[/tex]
Substituting these factored expressions in the above expression, we have,
[tex]\frac{m+3}{(m+4)(m-4)}\times\frac{m+4}{(m+3)(m-3)}[/tex]
Cancelling the common terms [tex]m+3[/tex] and [tex]m+4[/tex] , we get,
[tex]\frac{1}{(m-4)(m-3)}[/tex]
Thus, the expression equivalent to [tex]\frac{(\frac{m+3}{m^2-16}) }{(\frac{m^2-9}{m+4} )}[/tex] is [tex]\frac{1}{(m-4)(m-3)}[/tex]
Hence, Option B is the correct answer.
The equivalent expression to StartFraction m + 3 Over m squared minus 16 EndFraction divided by StartFraction m squared minus 9 Over m + 4 EndFraction is StartFraction m + 3 Over m + 4 EndFraction
Equivalent expressions to fractions
Given:
- (m + 3) / (m² - 16) ÷ (m² - 9)/ (m + 4)(m + 3)
Hence, upon evaluation; we have;
- = (m + 3) / (m² - 16) × (m + 4)(m + 3) / (m² - 9)
- = (m + 3) / (m² - 16) × (m + 4)(m + 3) / (m² - 9)= (m + 3) / (m² - 16) × (m + 4)(m + 3)) / m² - 9
- = (m + 3) / (m² - 16) × (m + 4)(m + 3) / (m² - 9)= (m + 3) / (m² - 16) × (m + 4)(m + 3)) / m² - 9= (m + 3) / (m + 4) (m - 4) × (m + 4)(m + 3) / (m + 4)(m - 3)
- = (m + 3) / (m² - 16) × (m + 4)(m + 3) / (m² - 9)= (m + 3) / (m² - 16) × (m + 4)(m + 3)) / m² - 9= (m + 3) / (m + 4) (m - 4) × (m + 4)(m + 3) / (m + 4)(m - 3)= (m + 3) / (m + 4)
The equivalent expression to the given expression is therefore; m + 3) / (m + 4)
Learn more about equivalent equation:
https://brainly.com/question/2972832