009 10.0 points

Find the density of seawater at a depth where

the pressure is 360 atm if the density at the

surface is 1045 kg/m'. Seawater has a bulk

modulus of 2.3 x 10' N/m". Bulk modulus is

defined to be

B = PAP

Ap

Respuesta :

Answer:

Explanation:

Bulk modulus (B) =  2.3 x 10⁹ N/m²

B = Δp/ (Δv/v)

Δp = B (Δv/v)

density = mass / volume

d = m/ v

ln d = ln m - ln v

Δd/d = -Δv/v

Δp = B (Δd/d)

Δp = 360 - 1 = 359 atom

= 359 x 10⁵ N/m²

359 x 10⁵ =2.3 x 10⁹ x (Δd/d)

Δd = (359 x 10⁵/ 2.3 x 10⁹) x d

= 156.08 x 10⁻⁴ x 1045

= 16.31 kg/m³

increased density

= 1045 +16.31

= 1061.31 kg/m³

=

Answer:

The density of seawater at a depth is 1061.3 kg/m³.

Explanation:

Given that,

Pressure = 360 atm

Density at the surface = 1045 kg/m³

Bulk modulus [tex]B=2.3\times10^{9}\ N/m[/tex]

We need to calculate the density of seawater at a depth

Using formula of density

[tex]B=\rho_{0}\times\dfrac{\Delta P}{\Delta \rho}[/tex]

[tex]\rho=\rho_{0}\times(1+\dfrac{\Delta P}{B})[/tex]

Put the value into the formula

[tex]\rho=\rho_{0}\times(1+\dfrac{\Delta P}{B})[/tex]

[tex]\rho=1045\times(1+\dfrac{(360-1)\times10^{5}}{2.3\times10^{9}})[/tex]

[tex]\rho=1061.3\ kg/m^3[/tex]

Hence, The density of seawater at a depth is 1061.3 kg/m³.