Respuesta :
Answer:
Explanation:
Bulk modulus (B) = 2.3 x 10⁹ N/m²
B = Δp/ (Δv/v)
Δp = B (Δv/v)
density = mass / volume
d = m/ v
ln d = ln m - ln v
Δd/d = -Δv/v
Δp = B (Δd/d)
Δp = 360 - 1 = 359 atom
= 359 x 10⁵ N/m²
359 x 10⁵ =2.3 x 10⁹ x (Δd/d)
Δd = (359 x 10⁵/ 2.3 x 10⁹) x d
= 156.08 x 10⁻⁴ x 1045
= 16.31 kg/m³
increased density
= 1045 +16.31
= 1061.31 kg/m³
=
Answer:
The density of seawater at a depth is 1061.3 kg/m³.
Explanation:
Given that,
Pressure = 360 atm
Density at the surface = 1045 kg/m³
Bulk modulus [tex]B=2.3\times10^{9}\ N/m[/tex]
We need to calculate the density of seawater at a depth
Using formula of density
[tex]B=\rho_{0}\times\dfrac{\Delta P}{\Delta \rho}[/tex]
[tex]\rho=\rho_{0}\times(1+\dfrac{\Delta P}{B})[/tex]
Put the value into the formula
[tex]\rho=\rho_{0}\times(1+\dfrac{\Delta P}{B})[/tex]
[tex]\rho=1045\times(1+\dfrac{(360-1)\times10^{5}}{2.3\times10^{9}})[/tex]
[tex]\rho=1061.3\ kg/m^3[/tex]
Hence, The density of seawater at a depth is 1061.3 kg/m³.