Evaluate
[tex]lim \: f(x) \: as \: x \: approaches \: 0[/tex]
knowing that
[tex] \frac{1}{2} - {x}^{2} \leqslant 1 - f(x) \leqslant \frac{1}{2} [/tex]
for all instances of x

Respuesta :

Answer:

  f(0) = 1/2

Step-by-step explanation:

At x=0, the inequality tells you ...

  1/2 ≤ 1 -f(0) ≤ 1/2

That is, ...

  1 - f(0) = 1/2

  f(0) = 1/2

  [tex]\boxed{\lim\limits_{x\to 0}{f(x)}=\dfrac{1}{2}}[/tex]