Answer:
Approximately [tex]10410\; {\rm N}[/tex] (assuming that [tex]g = 9.81\; {\rm m \cdot s^{-2}}[/tex].)
Explanation:
There are two forces on this car:
The net force on this car would be:
[tex](\text{net force}) = (\text{tension}) - (\text{weight})[/tex].
Rearrange to obtain:
[tex](\text{tension}) &= (\text{net force}) + (\text{weight})[/tex].
Let the mass of this car be [tex]m[/tex]. The weight of the car would be [tex]m\, g[/tex].
If the acceleration of the car is [tex]a[/tex], the net force on this car would be [tex]m\, a[/tex].
Thus:
[tex]\begin{aligned}(\text{tension}) &= (\text{net force}) + (\text{weight}) \\ &= m\, a + m\, g \\ &= (m)\, (a + g) \\ &= (1000\; {\rm kg}) \, (0.60\; {\rm m \cdot s^{-2}} + 9.81\; {\rm m\cdot s^{-2}}) \\ &\approx 10410\; {\rm N}\end{aligned}[/tex].