A quadratic equation is shown below: x2 + 5x + 4 = 0 Part A: Describe the solution(s) to the equation by just determining radicand. Show your work. (3 points) Part B: Solve 4x2 -12x + 5 = 0 using an appropriate method. Show the steps of your work, and explain why you chose the method used. (4 points) Part C: Solve 2x2 -10x + 3 = 0 by using a method different from the one you used in Part B. Show the steps of your work. (3 points)
Part A x² + 5x + 4 = 0 x = -(5) +/- √((5)² - 4(1)(4)) 2(1) x = -5 +/- √(25 - 16) 2 x = -5 +/- √(9) 2 x = -5 +/- 3 2 x = -5 + 3 U x = -5 - 3 2 2 x = -2 x = -8 2 2 x = -1 x = -4
Part B 4x² - 12x + 5 = 0 x = -(-12) +/- √((-12)² - 4(4)(5)) 2(4) x = 12 +/- √(144 - 80) 8 x = 12 +/- √(64) 8 x = 12 +/- 8 8 x = 3 +/- 2 2 x = 3 + 2 U x = 3 - 2 2 2 x = 5 x = 1 2 2 x = 2.5 x = 0.5
Part C 2x² - 10x + 3 = 0 x = -(-10) +/- √((-10)² - 4(2)(3)) 2(2) x = 10 +/- √(100 - 24) 4 x = 10 +/- √(76) 4 x = 10 +/- 2√(19) 4 x = 5 +/- √(19) 2 x = 2.5 + 0.5√(19) x = 2.5 + 0.5√(19) U x = 2.5 - 0.5√(19)